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The axisymmetric problem of tension of an elastic space weakened by a plane annular slit 
is examined. In,the solution the effective asymptotic method analogous to the one developed 

in paper [l] is used. 
Papers [2 and g] were devoted to the development of approximate methods for the solu- 

tion of the presented problem. An asymptotic method of solution of the problem of an annu- 

lar slit which represents a further development of the method presented in paper [ 11, is 
applied for the solution below. The method permits to obtain the solution of the problem 
under examination in the form of simple equations for large and small values of parameter 
X Over some intermediate interval of variation of X these asymptotic formulas give practi- 
cally identical results, thus assuring a complete solution of the problem. 

1. SoluUon of the problem for large A. In the elastic space let a plane 

annular slit (cut) be present occupying the region: a 5 r 5 6, 0s 8< 217, z = 0. The space 

is extended. by forces distributed evenly at infinity, of intensity q, in the direction perpen- 
dicular to the plane of the slit. It is required to determine the form of the surface of the 
slit y(r) and the coefficient of intensity of normal stresses N, calculated without taking in- 
to account forces of cohesion at points r = a and r = b (I = 0). The problem under investi- 
gation is reduced to an auxiliary problem of an annular slit in a space, to the surface of 
which a normal load 0, = - q = const is applied, while the stresses at infinity are equal to 
zero. 

Expressions determining y(r), N, and N, are the same for the initial and the auxiliary 

problems, therefore in the following we will examine the auxiliary problem. By means of 

the Hankel transformation the latter problem can be reduced to finding the function y(r) 
from the following integral Eq. 

b 03 

\ p-r (PI dp 5 E”J0 (0) JO (EP) G = % (a < r < 4 A=-.?_._ 
2 (l-v”) 

(1.1) 
a 0 

Here E is Young’s modulus, u is Poisson’s ratio, I, (z) is the Bessel function of zero 
order. Integrating both parts of Eq. (1.1) twice with respect to r, we obtain 

Here K (k) is the complete elliptic integral of the first kind, A and B are constants of 
integration. After making in Eq. (1.2) a substitution of variables according to Eqa. [I] 

i+x ifE 
r=aexph, p=aexp- 

5 (1.3) 
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we obtain an integral equation of the first kind with an even difference kernel which depends 
on the dimensionless parameter X 

P, (f) = P"SY (PI, M (t) = sch 0.5tK (sch 0.5t) (t = x?) 

q1 f/; r3 

(1 5) 

I(x) = - 7 ( 
--g-t.AlII -g+q 

Following paper [lf we represent the kernel M (t) of the integral Eq. (1.4) in the following 
form: 

M(I)=-ln 11 f + g cp + InI 2 1 $ d,@ (1.6) 
i=O i=l 

% 
= 2.079, cr = - 0.1091, EZ = 0.05352, d, = 0.0625, d, = - 0.00358 etc.) 

The series in (1.6) converge for all O$ t < n. Substituting kernel M (t) in the form (1.6) 
into Eq. (1.4) we obtain 

1 

..&“--~~ --T+ co df= 1 
=n f(%)- 

{ 
$5 + 1 ~(~)~ci+dil”~](z-f)2” dl)=rt+(x) (1.7) 

1=1 -1 

Applying the tr~sfo~ation formula to kq. (1.71, we obtain the integral equation of Fred- 
helm of the second kind with respect to function r$((x): 

-f 5 $jI vgcC_,, 3 cp(r)[2ici+d,+2i diln v](E--r)“-ld%} 

i=l 
In this connection the following conrditions must be fulfilled [4]: 

(1.9) 

(1.10) 

W may show that the first relationship (1.9) is an identity. The second relationship (I.9) 
and the expression (1.10) serve to determine constants A and B. 

WC shall seek the solntion of Eq. (1.8) in the following form: 

qJ (2) =I 5 i k-2” lnm IJp,, (5) (1.11) 
?I =o mz=o 

Let us substitute d(x) in the form (1.11) into tire left and right parts of Eq. (1.8). Then 
equating expressions for equal power6 of tiz and In h, we obtain an infinite system of in- 
tegral equations with respect to 4,,,(x): 

(1.12) 
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Omitting intermediate calculations with respect to Eqs. (1.6) and (1.9) to (LX!), we 
present the final expression for determination of function y(r): 

(1.13) 

In the expression (1.13) the function Q! (tf is equal to (1.14) 

a, (t) = 1+ (0.246 + x) h” + (0.0708 + 0.276~ + ~2) h+ + j1.750 + (0.336 + x) k-z + 
+ (0.00922 -0.176~) k-41 t/h + [1.604 + (0.264 + 0.385~)h-s](t/h)a + 

+ (1.029 + 0.1f9k-a)(t/k)8+ 0.517(t/h)" +0.215(t/h)5 + O(h-*) (x=0.0625 In J.) 
The coefficient of intensity of normal stresses at points r = o and r = b of the slit, res- 

pectively, are determined from conditions 

Nn=lim JCZ- - dy 
r-0 

rcrZ=lim I/r-aAz 
MaI r-a (7%) 

Nb=;ili ‘f/rob=-lim vb--r A-$ 
(1.15) 

(r>b) r--b (r< b) 

Substituting y(r) in the form (1.13) into condition (1.15) we obtain 

2. ‘So1utioa of the probiem for *small X (method of %uccwaive ap- 
proximotiors). Let UE differentiate with respect to r both parts of Eq, (1.2). Then in- 
tegrating by parts and making use of the condition 

y (a) = y (b) = 0 f 2.1) 
we obtain 

b 

5 ~7’ (~1 dp 1 .h WI JI(~P) df; = - + (f r + -4 +) (a+W (2.2) 

The Ltegral Eq.oQ.2) is equivalent to the following system of two integral Eqs.: 
co 

i f 

PYi (PI &P JI (0.1 J1 (E;P) dt = - 
0 b 0 

(oQ=Cb) 

co aa 

s PB (PI dp S JI ted JI (4~) dt = - 
a 

g + i PTI’ (~1 dp r Jl (Ed JI (IPI dE 
cl 0 0 

(ae<oo) 

under the condition that 

y’ (r) = KI (r) + Yzl (r) 
Let us introduce functions ri@ and ]r, (5) in the following manner: 

co 

c VI (5) Jz (B) dF, = 
{ 

Tl’ (F) (O<r<b) 

i, 

_ r 
3 

, (r) 
(b<r< 00) 

co 

s 
@-,(g) $1 (EF) dE; = - n’tF) (0<r<of 

0 ‘B’ (F) (n<r<co) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 



In this case the s stem (2.3) is reduced to two dual integral equations with respect to 
functions rt (t, end b, @,: 

K co 

s 1 VI (5) JI (Sr) dC = - ~8’ (r)s (2.7) 

0 0 

(o<r<b) (b<r<@ 
03 cc 

s 
uz re, Jl w de = - TX’ VI* s 

rz 15) Jl {Sr) 4= - g (2.8) 
0 &kr<a) 0 (a<?<4 

applying the tr~sfo~~t~on formula to Eqs, (2.7) and f2.E& and substituting the obtained 

fnnctions r, (& and rz (61 into 12.5) and (2&f, we obtain a system of two integral equations 

of the second kind with respect to functions y,‘(r) and y,‘frf: 

Xt is evident from (2.9) that the presented method is applicable to small values of h, 

bscause small x correspond to wide annuli, i.e. to the case when either a is small or b is 

large for 6 > II. We shall seek the solution of system f2.9) in the form 
a3 CO 

y1*’ (r) = - 3- T 
llh Y’n-- 

t-20' PI = 

(i=O, 1, . ..) 

Limiting ourselves to calculation of functions y rr’(r) and y 21’(r) and t&king into ac- 

count of (Z.lQf and <2.4, we obtain 

rz (a% -j- fi”f - 2trzbs 

f2.ffj 

Substituting y’(r) in the form (2,11) into condition (1.15) we obtain 

(6 = exp (- 2/h)) 

Integrating function y’(r) in the form (2.11) we obtain 
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(2.13) 

The constants C and D are determined from conditions (2.1): 

1 
C =--- 

2 arc cosa + ‘t/l -9ln [(I + 8) (1 -a)-1] 

n arc case + (0.3634e + 0.1715eS f 0.1117e5 + 0 (e?)) 1/m (2.14) 

D = 2.~~ (2 arc cos e + ‘t/lxn [(I + e) (1 - e)-l]} - C 

3. Solution of the problem for small X (method of products). Nu- 
merical analysis of the problem. A solution of Eq. (1.1) which is applicable to 

small values of parameter X can also be obtained in the form of combination of solutions of 

integral Eqs. [l] 

(3.1) 

P~C (P) dp E2Jo (Er) Jo (CP) dE = $-Jo (I-+) (4 < r < 00) (3.2) 

4 0 

in the following form: 

(3.3) 

Here ys(r) is a degenerate solution of Eq. (3.2) which represents the first term of the 

asymptote y, (r) for r/a -9 00. 

The solution of Eqs. (3.1) and (3.2) can be obtained if these equations are reduced to 

their equivalent dual integral equations, for example as this was done in the solution of 

Eqs. (2.3). We present the final expressions 

r3 (r) = j$ v/ha_ r4 PI = $$ 
( 

arc cos ++ocps) (3.4) 

It follows from the second relationship (3.4) that 

YS (r) = 4 (AIF 11 + 0 (BYI (3.5) 

Substituting yB (r), yq (r) and y Jr) in (3.3) we obtain 
-- 

y (r) = 8-l 4qsc-“Jf/b” - r2 arc cos a / r (3.6) 
The expression which determines the coefficient of intensity of normal stresses at 

points r = 4 and r = b are obtained from relationships (3.6) and (1.15), respectively 

N, = 2 ~2~qa-t”,-‘h v/1 - 19, Nb = 2 vBqn-p arc cos e (3.7) 

Completed calculations showed that Eqs. (1.13) and (1.16) can be used reliably for 2 s 

_<h<m, Eqs. (2.12) and (2.13) for 0 < XI 2 and Eqs. (3.6) and (3.7) for 0 <A < 0.75. A 
numerical analysis of equations for N, and N, shows that N, is always larger than N,. It 
follows from this that the form of the annular slit is unstable. The development of the annu- 
lar gap for monotonous increase of the load q applied at infinity starts at points of the inner 
contour and the annular gap transforms into a circular gap .of radius r = b. 

We present the values of quantities y* = (qb)“Ay(O.S(a + b)), N,* = (q fi)“N, and 

Nb* = (q dT,-‘N,, calculated for X= 2 (the first two columns) and h- 0.75 (the third and 
fourth column) from equations of Sections 1, 2 and 3: 
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Section 1 2 2 3 

T += 0.326 0.323 0.503 0.493 
N D l = 0.493 0.486 1.113 1.084 
N,* = 0.372 0.369 0.437 0.430 

BIBLIOGRAPHY 

1. Aleksandrov, V.M., Axisymmetric problem of action of an annular punch on an elastic 
half-space. Inzh. zh. MTT, No. 4, 1967. 

2. Cubenko, V.S. and Filimonov, I.F., Plane annular cut in an elastic space. Trudy 
Dnepropetrovsk. inst. inzh. zh.-d. transp. No. 50, 1964. 

3. Grinchenko, V.T. and Ulitko, A.F., Expansion of an elastic space weakened by an 
annular crack. Prikl. mekhanika Vol. 1, No. 10, 1965. 

4. Shtaennan, IJa., Contact Problem in the Theory of Elasticity. M. Gostekhizdat, 1949. 

Translated by B.D. 


